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1. Introduction

Kovtun, Son, and Starinets (KSS) have proposed a conjecture that there is a universal

bound for the ratio of shear viscosity, η, to entropy density, s, [1]:

η

s
≥ ~

kB

1

4π
, (1.1)
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where ~ and kB are Plank’s constant and Boltzmann’s constant, respectively. (For the

remainder of this paper we will use units with ~ = 1 and kB = 1.) KSS found that

eq. (1.1) is saturated by certain strongly coupled field theories which have a super-gravity

dual [1], and conjectured that η/s has a universal lower limit. Physically interesting and

accessible fluids, such as water, liquid nitrogen, and helium-4 satisfy the bound [2]. The

bound appears to be well justified for the class of field theories originally considered by

KSS [1], but it is not obvious from first principles that it should apply more universally

(hence its status as a conjecture).

The original form of the KSS conjecture states that the bound should be universal and

apply to all fluids, including non-relativistic fluids [1]. Yet even such an all-encompassing

statement includes ambiguities. It is not clear what one might mean by “all fluids” in

such a context. Is the conjecture limited to physically realizable systems, or is it equally

applicable to theoretical fluids which can be constructed in some given class of theories? If

so, in which class of theories does the bound hold? Is a “fluid” required to be absolutely

stable, or can the fluid be metastable? Are the number of species of particle that compose

the fluid limited? Perhaps due to questions such as these, a number of variants of the

conjecture with various proposed domains of validity were subsequently proposed by KSS.

These include variants which stipulate that the bound is valid for “all relativistic quantum

field theories at finite temperature and zero chemical potential” [2], for at least a “single

component nonrelativistic gas of particles with either spin zero or spin 1/2” [2], or for “all

systems which can be obtained from a sensible relativistic quantum field theory by turning

on temperatures and chemical potentials” [3]. While some of these variants appear quite

similar at first glance, they actually have quite different regimes of validity.

If the bound could be shown to be correct in any of its proposed forms, or indeed in

some readily specifiable alternative form, it would represent a truly major advance in our

understanding of quantum many-body physics. Indeed, even as a conjecture it has been

invoked in discussing systems as diverse as ultra-cold gases of trapped atoms [4] and the

quark-gluon plasma (QGP) [5]. Since KSS first conjectured their bound, the ratio of shear

viscosity to entropy density has been investigated in a variety of systems, [6 – 14]. The

smallest reported measurement of η/s has been associated with the QGP at RHIC [5]. (A

more recent analysis of the data from RHIC may actually be consistent with a violation of

the proposed bound [15].) Since the η/s bound may (or may not) have a rather extensive

scope, it is important to understand in which types of systems one should expect the bound

to hold.

As will be discussed in some detail below, the conjectured domains of validity of the

conjecture differ radically from form to form. Moreover, apparently innocuous changes in

the formulation of the variants of the conjecture can radically alter the systems for which

they apply. Accordingly, it is important in dealing with this subject to clarify the precise

nature of the various forms of the conjecture and, in particular, to which physical systems

they might apply.

The outline of this paper is as follows. In section 2, we begin with a brief discussion

of evidence in favor of the KSS bound in any of its forms. In section 3, we classify a set

of possible domains of applicability for which eq. (1.1) might hold. The various forms of
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the conjecture proposed by KSS will form a subset of these. Having delineated the various

forms, we critically examine the physical systems for which these variants actually apply.

In sections 4, 5, and 6, we address the key issue of the evidence that any particular vari-

ation of the conjecture might be valid. A natural question in this context is whether one

can construct a theoretical counterexample to a particular variant. In these sections, we

will present counterexamples to a number of variants of the conjecture. In this context,

we discuss in section 6.3 a subtle issue raised in ref. [16] regarding the interplay of ther-

modynamic and hydrodynamic limits for the counter-example in section 6 (a heavy meson

system based on a UV-complete quantum field theory). As will be seen, while ref. [16]

raises a profound issue, ultimately, it does not invalidate the counterexample.

In these sections we also point out that much of the evidence which seems to support

the conjecture in some general way is applicable only to variants of the conjecture which

have been ruled out by the counterexamples. Thus, our ultimate conclusion is that the

evidence for the conjecture in any of its forms is rather weak. If the bound is correct, it

appears that this would have to be due to some deep physics (for instance, due to some

aspects of quantum gravity as suggested in ref. [17], or the string- or M- theory underlying

the field theories used to describe nature) beyond the frameworks of quantum mechanics

and quantum field theory.

We summarize our conclusions in section 7. We relegate a number of the computational

details to various appendices.

2. Evidence for the KSS bound

Before we begin, it is useful to briefly review the arguments of KSS that have led to

their proposed bound. The argument makes use of the AdS/CFT duality from string the-

ory [18 – 21]. It is argued that in higher dimensional gravity theories, black branes (higher-

dimensional analogs of black holes) have finite temperature field theory duals (specifically,

N = 4 supersymmetric Yang-Mills theories at large Nc and infinite ’t Hooft coupling g2Nc)

that possess hydrodynamic properties such as viscosity. These hydrodynamic properties

can be related to gravitational properties of the black branes, and the correspondence can

be used to compute transport properties [1]. Using these methods the ratio η/s can be

computed. A number of theories in this class have been studied in the large Nc limit at

infinite ‘t Hooft coupling. All of them have saturated the inequality of eq. (1.1) [1]. A

general argument has been given that all theories in this class at large Nc and infinite ‘t

Hooft coupling must saturate the bound [2]. Moreover, one generally expects that as one

weakens the coupling of an interacting system, the viscosity should increase. One might,

therefore, expect that as the ‘t Hooft coupling is decreased from infinity, the ratio η/s

should increase. This has been seen in an explicit calculation for the first correction due

to finite ‘t Hooft coupling for one particular theory [22]. Thus, it seems quite plausible

that η/s is bounded as in eq. (1.1), at least for those large Nc field theories which have

super-gravity holographic duals.

The interesting question is whether the bound holds for some general class of theo-

ries beyond this, and if so for which class of theories. Note that apart from the field-
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theoretic calculations based on AdS/CFT, there is no reliable method to calculate η/s for

any strongly coupled quantum fluid, yet it is this class of fluids for which one expects the

smallest values of η/s. The optimistic view is that there could exist a very general property

of some large class of quantum fluids, namely, the η/s bound, which was unnoticed prior to

the AdS/CFT calculations in large measure because there was no tractable way to compute

the entropy and viscosity properties for strongly coupled theories. Of course, nature itself

is an excellent analog computer, and one way to probe whether there is a bound which

applies to the class of theories that describe the real world is to ask whether there are any

known fluids which violate the putative bound. In ref. [2], KSS examined a number of real

life fluids, including liquid helium, liquid nitrogen, and water, under a variety of conditions

and found no examples where the bound was violated. Typically, the ratio η/s for these

fluids was found to be orders of magnitude larger than the bound. This empirical data

appears to be one of the strongest pieces of evidence for the existence of a bound.

Additionally, a more heuristic argument can be made for the existence of a bound [2,

23]. Consider a relatively dilute fluid which for simplicity is composed of one type of

particle. By dilute we mean: i) that the dynamics of the system is dominated by two-body

scattering, and ii) that the mean-free path l between collisions is much larger than both

the thermal wavelength λT of the system and the characteristic range of the interaction.

In effect, this dilute regime is weakly coupled from the point of view of many-body physics;

quantum many-body effects are unimportant. This is the regime which can be accurately

described via a Boltzmann equation [24]. A simple kinetic theory estimate of the shear

viscosity in this regime was derived long ago by Maxwell:

η ∼ npT l ∼
pT

σ
(2.1)

where n is the density and pT = 2π/λT is the thermal momentum, and we have used the

dilute-gas relation nσl ∼ 1, where σ is the scattering cross-section at thermal energies [24].

(For a nonrelativistic system pT ∼ (mT )1/2, while for a relativistic system pT ∼ T .) In the

dilute regime, the entropy density is well approximated by the free gas entropy density,

and up to logarithmic corrections in m and T the entropy density s is just proportion to

the density. Combining these relations allows us to write the ration η/s as

η

s
∼ pT

nσ
. (2.2)

Clearly, the expression for η/s in eq. (2.2) is monotonically decreasing with n. At first

glance one might think that by simply increasing n one can reduce η/s to as small a value

as one likes. However, eq. (2.2) is only a useful estimate in the dilute limit. Increasing

the density, the mean free path shrinks, and eventually becomes comparable to either the

range of the interaction or the thermal wavelength. Beyond this point, quantum effects

alter the analysis, and one enters a strongly coupled regime. Presumably, these quantum

many-body effects cause the ratio of η/s to stop decreasing and begin increasing. From

these simple scaling arguments, it is easy to see that the density for l ∼ λT occurs when

η/s ∼ 1. Therefore, at the length scale for which the quantum many-body effects are

expected to begin to increase the ratio η/s, the effective minimum (and hence the lower

bound) of η/s is on the order of 1.
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I. Class of Underlying Theories

1. Any quantum mechanical system.

2. Any nonrelativistic quantum mechanical system with one component of spin 0 or 1/2.

3. Any “sensible” quantum field theory.

3′. Any “sensible” quantum field theory with µ = 0.

II. Stability Class of Fluids

a. Absolutely stable fluids only

b. Metastable and stable fluids

Table 1: Classification of the many forms of the conjectured bound for the ratio of shear viscosity

to entropy density.

Such general scaling and uncertainty arguments suggest that for any given system the

minimum value of η/s will likely be of order unity (or larger if the thermal wavelength is

shorter than the range of the interaction). This argument is heuristic and does not explain

why the number of order unity should be (4π)−1, but it is certainly consistent with it. A

somewhat more sophisticated version of this argument may be found in ref. [23].

3. Classification of the variants of the KSS conjecture

To discuss the various versions of the KSS conjecture systematically, it is useful to classify

the possible domains of validity of the bound. In doing so we focus on two distinguishable

aspects of the domains of validity. The first aspect is the type of theory for which the

conjecture is supposed to apply. The bound was originally found in a very limited class

of theories — large Nc gauge theories with super-gravity duals — and assumed to hold

for a broader class of theories. Thus, the first matter that we need to characterize are the

classes of theories for which the bound may hold. The second aspect to be characterized

is the degree of stability of a fluid described by some given class of underlying dynamical

theory. In particular, this second classification delineates whether the bound is to be taken

to hold for stable fluids only, or for long-lived metastable fluids as well.

Table 1 outlines a set of possible categories for both of the above aspects of the domain

of validity for the bound. The listing of theory classes is intended to be ordered, more or

less, in decreasing scope: i.e., as one descends the list, the possible number of fluids which

can be described by each subsequent set of theories decreases.

Using the classifications delineated in table 1, each variant of the conjecture can be

labelled by a pair of characters, one chosen from the list of classes of underlying theories,

and another chosen from the list of stability classes. For example, if one takes the original

form of the conjecture that the bound applies to “all fluids” to mean that it applies to all

fluids described by quantum mechanics, then the conjecture is of class 1a or 1b, depending

on whether one wishes to restrict the domain of validity to absolutely stable fluids or not.

Note that the list of theory classes described in table 1 may not be an exhaustive one, but

it is intended to include the natural interpretations of previously published variants of the

conjecture and some modest extensions thereof.
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In the next two subsections, we will further examine the classes of theories and the

fluid stability classes to which the bound might apply. The first subsection will discuss the

applicability of the conjecture to the various classes of the theories that we have delineated

in table 1. The second subsection will explore the issue of stable versus metastable fluids.

After that, we will discuss the applicability of the various versions of the conjecture to

different realistic fluids.

3.1 Classes of theories

A fluid can be described theoretically as a many-body system whose constituent particles

are mobile enough to sample the complete position space of the fluid. We can define a

“theoretical fluid” by defining the interactions between particles that make up the fluid.

Of course, real fluids may be regarded as theoretical fluids as well — they are the theoretical

fluids associated with the correct theory of nature. The logic of the KSS conjecture is that

the η/s bound, which was discovered in the context of gauge theories with super-gravity

duals, applies to a broader class of theories. Part I of table 1 lists a number of possible

classes of theories for which the KSS bound might be taken to apply.

The list of classes of theories may seem somewhat peculiar. It was generated in part

to reflect the possible ways to interpret the variants of the KSS conjecture on the mar-

ket. There is another reason to consider these classes. In many ways, the most natural

class of theory to consider is class 1, the general class of systems describable by quantum

mechanics. All of the heuristic arguments in section 2 in support of a generalization of

the KSS conjecture to theories beyond those described by AdS/CFT at large Nc apply if

the generalization is to generic quantum mechanical systems. (As we will see later, this

is not true of any of the alternatives.) However, it is easy to see (by explicitly construct-

ing counter-examples) that this variant in its full generality cannot be correct. The other

classes of theories in table 1 may be thought of as ways to restrict these classes of theories

to which the bound should apply in order to evade the problems with class 1.

As was briefly noted early on by KSS [2] and subsequently addressed in more detail in

refs. [6] and [13], the bound may be violated by considering a nonrelativistic fluid composed

of an extremely large number of distinct species, which are all degenerate in mass, and

interact with each other via identical interactions. The key point is that by increasing the

number of species while keeping the total density of particles and temperature fixed, the

shear viscosity η is left essentially the same as in a single species fluid, while the entropy

grows through the Gibbs mixing entropy. By making the number of species exponentially

large, the bound can be violated. A detailed discussion of how this works is given in

section 4.

The variants of the conjecture considered by KSS in ref. [2] are essentially those in

classes 2 and 3′. These evade the problem of Gibbs mixing entropy in very different ways.

Class 2 does this by explicitly limiting the number of species in the fluid to no more than

2 (the number of spin states of a spin-1/2 system), and thereby appears to restrict the

growth in Gibbs entropy. Class 3′ does this indirectly by restricting the chemical potentials

to zero: with a zero chemical potential and a quantum field theoretic system, one cannot

independently adjust the density of each of the particle species, since each particle density
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is fixed by the temperature and masses of the particle. Thus by adding species at a fixed

temperature, one necessarily changes the total density of particles.

There is a subtlety associated with the theories of class 2. The issue concerns the

precise definition of a fluid with “one component.” Suppose that we have a many-body

system with one type of particle, A, which interacts through some two-body potential.

Suppose further that this interaction is attractive and some number of two-body (and/or

many-body) bound states (molecules) exist. One might wish to regard a fluid composed

of particles of type A as a fluid with one component, since ultimately everything in the

fluid is composed of one type of particle. However, the kinetic degrees of freedom whose

motion describes the fluid include both the atoms and the molecules, and the system is

effectively a multi-component fluid. Furthermore, one may naively suggest that fluids

which are composed from only one type of molecule, such as water, may be considered

as having a single species. However, water molecules (and many other molecules) have

rotational and vibrational excitations which can be accessible. These excitations cause

the fluid to act like a multi-species fluid with each excited state behaving as a distinct

species. For the purposes of the discussion here, we will therefore consider a system to

be of “one component” only if either of the following two conditions are met: first, the

particles making up the fluid do not form bound states, and second, the internal excitation

energies of the particles are sufficiently high so that the excited states are not populated

due to the temperature. Otherwise, we will consider the system to be a multi-component

fluid.

Variants associated with class 3, which limit the conjectured bound’s applicability to

systems described by “sensible quantum field theories,” attempt to evade the entropy prob-

lem in a more subtle way. The modifier “sensible” was introduced in this context by Son

and Starinets [3]. In this context, the term “sensible” might be taken as a synonym for

“well defined” — that is, a quantum field theory in which, at least in principle, all observ-

ables may be calculated without additional ad hoc input. From a practical perspective,

the term “sensible” may be taken to refer to UV-complete theories; namely, those which

are sensible down to arbitrarily short distances, and thus do not require additional pre-

scriptions for dealing with uncontrolled short-distance physics. Thus, “sensible quantum

field theories” would be taken to include asymptotically free field theories such as QCD

or conformal field theories. It should be noted here that the classes of theories believed

to be UV-complete are rather limited. Many renormalizable theories with which we have

considerable experience are probably not “sensible” (at least perturbatively) in the sense

used here. For example, theories such as QED and linear sigma models are presumably

not “sensible” in that it is generally thought that unless they are trivial, they are likely to

be ill defined in the ultraviolet.

How might the restriction to “sensible” quantum field theories possibly evade the

difficulty posed by Gibbs mixing entropy? Recall that the violation of the bound may well

require an extremely large number of essentially identical species of nonrelativistic particles.

Accordingly, it is difficult to find any realistic situation where it occurs for real world
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fluids.1 One might hope that the difficulty of constructing practical examples of such fluids

might actually reflect some deep and previously undiscovered principle. This hypothetical

principle must go beyond that which is contained implicitly in quantum mechanics, since

quantum mechanical systems can be found which violate the bound in eq. (1.1). Thus, it

is natural to ask if such a principle could have a quantum field theoretic origin. This gains

some credence from the fact that the conjectured bound was first seen in a particular class

of “sensible” quantum field theories (conformal field theories with gravity duals). Thus,

one might speculate that the bound should only apply to systems which are ultimately

described by sensible quantum field theories, and therefore it should not be possible to find

a UV-complete field theory that can give rise to a system that can violate the KSS bound.

On its face, it seems quite implausible that constraining the relativistic field theory un-

derlying a non-relativistic fluid to be UV-complete should somehow rule out nonrelativistic

fluids of many components which violate the bound in eq. (1.1) through a very large Gibbs

mixing entropy. After all, the short distance dynamics of the underlying quantum field

theory typically occur on radically different scales than the scales of the effective degrees of

freedom in the nonrelativistic gases of interest. Accordingly, it is very difficult to see how

a constraint on the dynamics on η/s for the fluid can arise naturally. Moreover, as noted

in ref. [1], even after units are restored the speed of light does not appear in the bound.

Thus, it is very hard to understand how the origin of the bound could be related to the

relativistic nature of the underlying field theory.

The preceding arguments suggest that it is very hard understand from first principles

why a restriction to “sensible” relativistic field theories ought to yield the bound. However,

naive attempts to increase the number of nonrelativistic species of particles in a gas by

increasing the number of types of particles in the underlying quantum field theory can

easily cause a theory to lose asymptotic freedom and thereby ceasing to be a “sensible”

quantum field theory [6, 7].

It is useful to illustrate how this can happen. Let us consider a nonrelativistic gas which

is predominantly composed of one type of pion of mass mπ, for instance the π+. Such a

gas undoubtedly has its origins in QCD, a UV-complete quantum field theory. To describe

such a gas in the context of QCD, we can consider the theory at a finite temperature T ,

and a chemical potential µu for the up quark u of the form µuuγ0u. (It is unnecessary

to also impose a chemical potential for the down quarks.) If the system is in the regime

T ≪ mπ and Λ ≫ µu > mπ where Λ is a typical hadronic scale of order 1 GeV, then it is

essentially a nonrelativistic gas of π+ mesons. Now suppose that we wish to generalize this

to a many-species pion gas. To do this, let us generalize QCD to include Nf degenerate

flavors of quarks with Nf large and even. Suppose we add a common chemical potential

µc for half of the flavors:

Nf /2
∑

j=1

µcqjγ0qj (3.1)

1Note, however, that ref. [13] explores the possibility that it may be possible to violate the KSS bound

with a gas of fullerenes
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while keeping T ≪ mπ. This will create a nonrelativistic system containing N2
f /4 types of

pions (each one with a quark of type qj with j ≤ Nf/2 and an anti-quark of type qk with

k > Nf/2). By carefully tuning µc while increasing Nf , the total density of pions can be

kept fixed while increasing the number of species. This appears to allow one to create the

conditions in which the Gibbs entropy dominates the ratio of η/s and causes a violation of

the KSS bound.

However, there is a catch. Recall that for small g, the beta function for QCD is given

by

β(g) = − g3

16π2

(

11Nc

3
− 2Nf

3

)

. (3.2)

Asymptotic freedom requires that 11Nc > 2Nf . By increasing Nf in order to violate the

bound in eq. (1.1), the underlying theory is pushed outside of the domain of “sensible”

theories. Of course, one might try to evade this by increasing Nc at the same time as

one increases Nf ; by fixing the ratio Nc/Nf as the large Nf limit is taken, asymptotic

freedom can be maintained. However, recall that the cross section for π − π scattering

scales as 1/N2
c ∼ 1/N2

f [26]. For a weakly interacting fluid, the shear viscosity is expected

to scale with the inverse of the cross-section [24]. Thus, by increasing Nc along with Nf to

maintain asymptotic freedom and keep the theory sensible, one finds that η ∼ N2
f . On the

other hand, the Gibbs mixing entropy grows only with log(Nf ), so η/s ∼ N2
f / log(Nf ) for

large Nf . As a result, in a pion gas in the large number of species limit, the decrease in

the cross section associated with the Nc scaling necessary to maintain asymptotic freedom

overwhelms the increase in Gibbs mixing entropy due the to the Nf scaling, and η/s is

driven to infinity in the combined Nf ∼ Nc → ∞ limit.

The example of pion gases in QCD shows how the restriction to a “sensible” theory

can prevent the system from ever getting into a regime where the Gibbs mixing entropy

dominates the ratio of η/s and thus violates the KSS bound. The central question under-

lying the theories associated with class 3 is whether the situation seen for pion gases in

QCD is paradigmatic for all sensible theories.

There is an additional important subtlety associated with the notion of “sensible” in

class 3; namely, whether the standard model should be regarded as a sensible quantum

field theory. The standard model contains scalar fields and is probably not UV-complete.

This implies that class 3 should not apply to the standard model per se. However, the

standard model may be regarded as the low energy effective theory for some theory (a field

theory, a string theory, or something else) which must make sense in the ultraviolet since

it describes nature. Thus, it might be useful to regard “the standard model,” as described

in the textbooks, to include the appropriate UV-completion for real world situations, and

hence be “sensible.”

Having delineated some of the possible domains of validity of the conjectured bound

on η/s, in the next subsection we will discuss the matter to which stability classes of fluids

the conjectured bound may apply.

3.2 Metastability

In addition to distinguishing variants of the conjecture according to the classes of underlying
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theories to which they apply, we also need to discuss the stability classes of the fluids for

which the η/s bound may apply. A fluid can be described as either stable or metastable.

In this subsection, we will examine some of the issues associated with the applicability of

the bound to stable and metastable fluids.

We are defining a metastable fluid to be one which is in a macroscopic state which is

not the state of lowest free energy; such a fluid is expected to decay over time to the true

macroscopic ground state. If the time scale of the decay is extremely long compared to

other relevant time scales, the fluid is considered to be metastable. A stable fluid, on the

other hand, is one in which no decay is possible, i.e., the fluid is in its ground state and

will remain there unless it is perturbed. Metastable fluids are characterized by at least

two relevant time scales. First, there is τfl, which is the longest microscopic time scale

relevant for fluid motion. In practice, for a typical real world fluid, τfl might be taken to be

several times the characteristic collision time between molecules. Thus, τfl characterizes the

minimum time scale for which it is meaningful to talk about macroscopic fluid behavior.

Next, there is the time scale τmeta for the decay from a metastable fluid to a stable (that

is, lowest-energy) configuration.

The characterization of the fluid clearly depends on the ratio τfl/τmeta. If τmeta/τfl ∼ 1

or less, then the decay time is of the same order or less than the characteristic time for

fluid-like behavior, and it is not meaningful to describe the system as being in a well-

characterized fluid state. In effect, in such a regime the fluid is so unstable that one

cannot measure properties like shear viscosity or entropy before the system decays into a

qualitatively different type of fluid. However, if τmeta/τfl ≫ 1, the decay time scale is much

longer than the time scale of the measurements needed to determine fluid properties such

as the shear viscosity. In this case, the fluid can be said to be metastable, and properties

such as viscosity and entropy are essentially well defined in the metastable phase. For

an extremely large τmeta, the metastable fluid acts to a very good approximation as if it

were a stable fluid. We should note that many systems which we obviously characterize

as fluids in the real world are actually metastable. An extreme example is nitroglycerin

(C3H5(NO3)3). Above its melting point of 13.2◦C it is clearly a fluid — it will slosh

around in a beaker. However, liquid nitroglycerin is obviously not in a configuration at

the minimum of the free energy — considerable energy can be released when the molecules

break up and rearrange. It is noteworthy that in the real world, τmeta for metastable fluids

is typically many orders of magnitude larger than τfl.

There are two ways in which a system can be metastable in the sense used here. The

first is the rather typical example in statistical physics in which a macroscopic phase is

locally stable while being globally unstable. That is, any small fluctuation of a macroscopic

fluid property (e.g., density) from its value in the metastable phase increases the free energy,

but large fluctuations can lower it. This is quite familiar in systems which can undergo

first-order phase transitions. The system can be beyond the phase transition point but stay

in the old phase. Thus, for example, water may be supercooled or the relative humidity can

be greater than 100%. Such systems can live for a very long time (if undisturbed) since

there is barrier which must be either surmounted via thermal fluctuation or tunnelled

through quantum mechanically. In either case, if the barriers are large, the lifetimes of the
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metastable phases grow exponentially.

There is a second way for a system to be metastable. A system can be locally unstable

in terms of some thermodynamic variables, but the time scale associated with the local

instability can be very long. It is this sort of metastability which is relevant for many

of the discussions in this paper. For example, this can happen in chemical systems. A

system can be in thermal equilibrium kinetically but not chemically; however, the time

scale for reaching chemical equilibrium can be very large. Suppose, for example, that one

initially has a gas composed of molecules of one type, A. Suppose further that the reaction

A+A→ B +C (where B and C are two other types of molecules) is exothermic, but the

reaction rate is very small compared to the rate of elastic scattering of particles of type A.

This will happen if the activation energy for the reaction is well above the temperature. In

such a case, over very long time scales the system will act like a fluid of molecules of type

A in thermal equilibrium kinetically, despite being out of thermal equilibrium chemically.

Locally, as well as globally, the system is not at a minimum of the free energy for all of the

thermodynamic degrees of freedom, but nonetheless behaves like a fluid.

We noted above that when τmeta ≫ τfl, fluid properties such as shear viscosity are

essentially well defined. In a strict sense, however, they are not. As a matter of principle,

transport properties, such as shear viscosity, describe the linear response of a fluid to a

perturbation. This response is dynamical, and takes a certain characteristic time to play

out. We can identify this time as τfl. The transport properties are only well defined to

the extent that the underlying fluid does not change its nature over this dynamical time

scale. Since a metastable fluid does change its properties over time, there is an intrinsic

ambiguity in any evaluation of η. One might expect that any uncertainty in the value of η

is roughly of relative order τfl/τmeta. Fortunately, in a good metastable system this is an

exceptionally small number, and the ambiguity is very small.

The issue of metastable fluids is important in the context of the KSS conjecture. The

central question is whether the conjectured bound applies to metastable fluids as well as to

stable fluids. This may seem like a relatively minor issue if the bound applies to the theories

in class 1. Then the question of whether the bound applies to metastable fluids reduces

to the issue of whether it applies to normal stable fluids such as water, or whether it also

applies to metastable fluids such as nitroglycerine. However, as will become apparent in the

next subsection, if the bound only applies to theories in class 3, the question of whether the

bound applies to metastable fluids determines the bound applicability to familiar real-world

fluids.

To the extent that the KSS conjecture somehow captures an essential property that a

system needs to possess to behave as a fluid, one might naturally assume that it should also

apply to metastable systems whose macroscopic behavior is clearly that of a fluid. There

is an objection of principle that could be made here, in that the conjecture is sharp — it

provides a definite bound for η/s — while the quantities η and s are intrinsically ambiguous

for a metastable fluid. Of course, as noted above the ambiguities are very small for long-

lived metastable fluids. Accordingly, it is highly plausible that the conjecture, if correct,

applies to metastable fluids with one minor alteration: the bound may be slightly violated,

but all possible violations must be within the scales of ambiguities of the quantities. In
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Variant QGP He H2O C3H5(NO3)3

1a. Y Y Y N

1b. Y Y Y Y

2a. N Y N N

2b. N Y N N

3a. Y N N N

3b. Y Y Y Y

3′. Y N N N

Table 2: Table showing if each variant of the conjecture can be applied (at least approximately)

to either the quark gluon plasma (QGP), liquid helium (He), water (H2O), liquid nitroglycerin

(C3H5(NO3)3); Y(es), N(o)

practice, for real metastable fluids, these violations are extraordinarily small, and as a

practical matter the bound would then be taken to hold for any long-lived metastable

fluid. We generally take the view that is unnatural for there to be a fundamental property

which applies to all stable fluids, but which does not apply — even approximately — to

metastable fluids no matter how long-lived. It seems far more natural to assume that in the

limit of infinite lifetime, a metastable fluid would be indistinguishable from a stable one,

and that it would share all of the essential properties of stable fluids. Having said this, as

a logical matter it is certainly possible that the bound only applies — even approximately

— only to absolutely stable fluids. Accordingly, it is important to classify the possible η/s

conjectures according to whether or not they apply to metastable systems.

3.3 Applicability of the various classes to real fluids

Having enumerated various forms of the conjecture, it is important to see the types of

realistic fluids to which they apply. In table 2, we show the applicability of the various

forms of the conjecture to four different types of fluids which serve to illustrate the broad

issues of where the various classes apply. The fluids we examine — the quark-gluon plasma,

liquid helium, water, and nitroglycerine — were chosen to serve as paradigms for broad

classes of fluids.

First, consider the quark-gluon plasma. It is generally believed that the dynamics

of high energy heavy ion collisions depend essentially on QCD alone — i.e., electroweak

effects are small. Moreover, it is generally thought that the system thermalizes, at least

approximately, over reasonably large spatial regions, and that in these regions the net

baryon density is low since the bulk of the baryon number goes down the beam pipe. Thus,

to a good approximation these regions are well described by QCD at finite temperature

and zero chemical potential. If the temperature in these regions is large enough (above

∼ 170 MeV), these regions can be said to contain a quark-gluon plasma. Note that in

saying this we do not necessarily imply that QCD has undergone a phase transition into a

quark-gluon plasma phase; a rapid cross over into a qualitatively high-temperature regime

is adequate.
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Clearly, nontrivial approximations are needed in order to describe this physical system

in terms of thermalized QCD at zero chemical potential. However, if one accepts these

approximations as valid — as we will do implicitly for the purpose of this discussion —

then one has a well-characterized field theoretic description of the quark-gluon plasma.

Within that characterization, it is clear that all of the variants of the conjecture should

apply to this system, except for the variant with theories of class 2. As a quantum field

theory, it is certainly a quantum mechanical system, and thus falls neatly into class 1.

QCD is the archetypical example of a “sensible” field theory: it is asymptotically free, and

hence is described by theories of class 3. Moreover, as a system at zero chemical potential,

it falls into class 3′. Clearly, since the quark-gluon plasma is a relativistic system with

many components, it does not fit into class 2.

Next, consider liquid water, which is truly an archetypical example of a fluid. Clearly

from the perspective of chemical interactions, water is a stable fluid. One could model

water to very high accuracy using a many-body quantum-mechanical description based on

electrons, oxygen nuclei and hydrogen nuclei as the basic degrees of freedom, interacting

via a Coulomb potential and (small) magnetic moment interactions. While in practice, it

would be very hard to compute η/s from such a model, in principle it is computable, and

we have every reason to believe that such a description would be very accurate. Thus, one

expects that variants 1a and 1b of the conjecture should apply to water.

However, one does not expect variants of class 2 to apply. The previous description

based on electrons and nuclei clearly violates the condition that there is only one component

to the fluid. One might try to avoid this by considering an effective quantum mechanical

model of the dynamics of water where the fundamental building blocks are water molecules

interacting via effective interactions. Such a description would be under the umbrella of

class 2 provided that only a single internal quantum state of the water molecule was relevant

to the dynamics. However, the minimum excitation energy of a water molecule is 0.16

K [27], which corresponds to a rotational level, while for liquid water T > 273K. Thus, in

practice, water molecules are not to be found predominantly in their lowest energy level in

liquid water — many rotation levels of the molecules are excited, and the system does not

act like a single-component fluid.

The applicability of conjectures based on theories of class 3 (“sensible” quantum field

theories) to water is subtle and perhaps somewhat counterintuitive. Since water is a real

world fluid and thus is presumably described by the standard model — a quantum field

theory — it seems natural that water be included within the variants of the conjecture

based on class 3. As noted above, there is some question as to whether we should consider

the standard model to be a “sensible” quantum field theory, but for the moment let us

assume that it is legitimate to do so. With this assumption, it may seem obvious that

variant 3a applies to water since water is a stable fluid. However, this is is not the case.

Although it is stable chemically, water is not stable under the dynamics of the standard

model: nuclear reactions are part of the standard model and can alter the constituents of

water. For example, it is energetically allowable for two of the hydrogen nuclei in water to

fuse in the reaction p+p→ d+e++νe. Of course, the decay time of nuclear fusion in water

is very long, indeed much longer than a Hubble time. The reason for this is simply that
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the Coulomb barrier is very large compared to thermal energies, and the rate of thermal

fusion is thus exponentially small. Thus from the perspective of the standard model water

is metastable rather than stable: variant 3a of the conjecture does not apply to water,

but variant 3b does, at least to the extent that we can consider the standard model, and

whatever lies beyond it, as a sensible quantum field theory. Clearly, theories of class 3′ do

not apply to water since this class is a subclass of 3a.

The fact that water is not stable under the dynamics of the standard model reflects the

conservation laws of the standard model. Clearly, under the standard model the number

of hydrogen and oxygen nuclei do not represent conserved quantities. Apart from electric

charge, the only global conserved quantity in the standard model is B−L; due to anomalies

the baryon number B and lepton number L are not separately conserved. Thus, the only

type of stable fluid we can specify in the standard model is one with a fixed chemical

potential for B − L.

One might argue that the rates of nuclear reactions are so slow that they could not

possibly be relevant to the validity of the conjecture. While this is a very plausible argu-

ment, it is simply an argument against a requirement that the conjectured bound needs

absolute stability rather than metastability.

There is an alternative argument which can be made that variant 3a can apply to

water [25]. Nuclear reactions are totally irrelevant at the scale of interest for water. Thus,

to study water one might replace the standard model with a variant of quantum electrody-

namics containing electrons and fundamental fields representing the proton and the oxygen

nucleus. To the extent that hyperfine effects involving the nuclear spins are unimportant to

the dynamics of water, such a system will behave like water and will be absolutely stable,

apparently putting water in the domain of variant 3a. However, there is a problem with

this setup: QED is not asymptotically free and as a result it is presumably not “sensible”.

One might hope to evade this by embedding this low energy QED-like theory into another

theory which a) is asymptotically free, b) leaves the low-energy QED physics essentially

unaltered, and c) does not introduce any instabilities for water. Unfortunately, it is by no

means clear that it is possible to find any field theories which meet these criteria. Until

such a theory is constructed, we will take the view that variant 3a should not be regarded

as applying to water.

Other real world fluids dominated by chemical (i.e., electromagnetic) interactions are

similar to water in terms of their classification, with obvious modifications. Thus, for

example, liquid helium is like water in being described by variants 1a, 1b, 3b, and not 3a. It

differs in that the lowest excitations for helium are electronic in nature, since helium (unlike

water) is an atomic fluid as opposed to a molecular fluid. Since liquid helium temperatures

are well below the excitation energy for electronic transitions, the atoms in liquid helium

are essentially all found in their ground state. Thus, it is possible to model liquid helium

with good accuracy in terms of a quantum mechanical many-body system with fundamental

helium atom degrees of freedom interacting via an effective potential. Within the framework

of such a model, liquid helium, unlike water, falls within the domain conjectures of classes

2a and 2b. Similarly, nitroglycerine is like water in terms of the variants of the conjecture

which describe it, with the exception of class 1a which describes water (which is a stable
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fluid chemically) but not nitroglycerine (which is obviously metastable).

Having discussed a framework for labeling the possible variants of the η/s bound

conjecture, in the next three sections we will construct and discuss counterexamples to

variants of the conjecture of classes 1, 2, and 3. We will ultimately show that that only

class 3a (and its subclass 3′) remains viable.

4. Class 1

The first variant of the KSS conjecture that we will closely examine is class 1: the conjecture

that η/s ≥ 1/4π for all fluids described by quantum mechanics. This variant seems to be

very close to the original form of the bound proposed by KSS [1]. Note that this variant

of the conjecture has much stronger support than the other variants; all of the heuristic

arguments as well as all of the empirical evidence given in support of the KSS bound

support this variant. This variant has the widest applicability, as it it applies to any

fluid, both relativistic and nonrelativistic ones, and both physically realizable or purely

theoretical fluids provided they are described by quantum mechanics.

However, ref. [2] and others [6, 13] have noted that this variant of the conjectured

bound can be violated by considering a fluid with a large number of different species. In

this section, we elaborate on the previous arguments of ref. [6] to describe a nonrelativistic

quantum mechanical system which violates the conjectured bound.

4.1 A nonrelativistic gas

Reference [6] considers a nonrelativistic quantum many-body system with a large number of

species for which the computation of the ratio η/s is analytically tractable, up to corrections

which can be made arbitrarily small. By imposing a particular set of scaling relations on

the parameters of the system, it is possible to demonstrate that η/s can violate variants

1a and 1b in the limit of a large number of species. We review this argument here.

Consider a gas composed of a number (Ns) of distinct species of spin-0 bosons of

degenerate mass, m, which can interact via a two-body potential. The two-body potential

is identical for all species, but is limited to a finite range, R. The gas is in thermal

equilibrium at a temperature T , and has the same density for each species, na = n/Ns,

where n is the overall density of the system. The system is in a low temperature and low

density regime such that

R−2, a−2 ≫ mT ≫ n2/3, (4.1)

where a is the scattering length, and mT is the thermal momentum squared. This regime

can be maintained by using the following scaling of the density and temperature:

n =
n0

ξ4
T =

T0

ξ2
, (4.2)

where n0 and T0 are independent of the dimensionless scaling parameter ξ. With a suffi-

ciently large value for ξ, eq. (4.1) can be easily satisfied.

In this density and temperature regime, the entropy for the system is simply that of

a classical ideal gas, with small corrections. The key point is that the temperature is high
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enough relative to n
2/3
0 /m for the classical expression to hold, while the density is low

enough to neglect the interactions. The entropy density can then be written in terms of

the scaling in eq. (4.2) as

s ≃ n0

(

log

(

(mT0)
3/2

n0

)

+
5

2
+ log(ξ) + log(Ns)

)

, (4.3)

where the term log(Ns) is associated with the Gibbs mixing entropy of the Ns different

species.

Furthermore, in this density and temperature regime, the thermal wavelength is much

shorter than the inter-particle spacing, meaning that the many-body dynamics are es-

sentially classical. Moreover, the low density implies that the many-body dynamics are

dominated by binary collisions, implying that the system is in the regime of validity for

the Boltzmann equation [24]. The low temperature further implies that the two-body col-

lisions are dominated by s-wave scattering, with a cross section essentially unchanged from

its zero momentum value. That is, two-body scattering in this system can be approximated

as isotropic and energy independent, which is formally the same as classical hard sphere

scattering.

The shear viscosity is analytically calculable in such a system [24], and it is given by

η = Chs

√
mT/d2, where d is the diameter of the hard spheres, and Chs ≈ .179 is a coefficient

that is numerically calculable.2 Identifying the scattering length a as the effective hard

sphere diameter, we can now calculate the ratio η/s:

η

s
≃ Chsξ

3
√
mT0

a2n0

(

log
(

(mT0)3/2

n0

)

+ 5
2 + log(ξ) + log(Ns)

) . (4.4)

Corrections to eq. (4.4) are suppressed by powers of 1/ξ and should become irrelevant for

sufficiently large ξ.

The derivation of eq. (4.4) required the system to be in a low density and low tem-

perature regime such that a classical approximation for both the shear viscosity and the

entropy density can be made. This limit does not place any constraints on the number of

species of particles in the fluid. Accordingly, one can demand that the number of species

scale exponentially with the scaling parameter:

Ns = exp(ξ4) (4.5)

As the temperature and density decrease, the number of species increases simultaneously.

When eqs. (4.4) and (4.5) are combined, the large ξ scaling of the ratio is

η

s
≃ 1

ξ

Chs

√
mT0

a2n0
(4.6)

up to power law corrections in 1/ξ. Clearly, in this combined limit, the ratio η/s can

violate the conjectured bound simply by making ξ sufficiently large. This violation stems

completely from the large Gibbs mixing entropy associated with the exponentially large

number of species.

2The coefficient, Chs, can be calculated in the Chapman Enskog expansion as outlined in [24] and is

5/(16
√

π) to leading order.
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4.2 Stability

In this subsection, we will discuss the stability class of the fluid that we have described

above. The argument in the preceding section does not depend on the interparticle potential

and thus will continue to hold for any choice of the interparticle potential. If we choose

the interparticle potential to be purely repulsive, the particles making up the fluid cannot

lower their energies by forming bound states. Therefore, with this choice, the system that

we have described above is a stable fluid with an arbitrarily small value of the the ratio

η/s. This is sufficient to demonstrate that this system is a counterexample to both class

1a and 1b variants of the conjecture.

While with the system above we were free to choose the interaction potential to be

whatever we wanted, in some other situations this is not possible. In particular, in our

discussion of systems of class 3, in section 6 we will find that the interaction potential there

will necessarily be an attractive one. To see the implications on the stability of a fluid of an

interaction potential with some attractive regions in a simple context, we will now discuss

the consequences of choosing an interparticle potential with some attractive regions for the

system in the previous section.

One might worry that with such a potential, the fluid could lower its energy by forming

bound states, or by “clumping” together; that is, by forming macroscropic regions of

higher density where the attraction is enhanced and the free energy is lowered. If either

situation is possible, the fluid would then be either unstable or metastable. As discussed

in section 3.2, in order to distinguish between these two cases, we need to compare τmet,

the characteristic time for the phase to change macroscopically, with τfl. We can show that

in our scaling regime τmeta/τfl diverges as ξ5 or faster, ensuring that when ξ is large the

system is metastable.

The type of metastability with the decay mechanism which yields the fastest possible

decay parametrically is for systems which can form two-body bound states. As is well

known, in a nonrelativistic gas three-body collisions are necessary to allow the formation

of two-body bound states due to energy and momentum conservation. Therefore, the

decay time τmet scales with the time between three-body collisions in the system. The

characteristic time scale of the fluid τfl scales with the time scale for two-body collisions.

Therefore the ratio τmeta/τfl has roughly the same scaling as τ3/τ2, where τ3 and τ2 are the

three-body and two-body collision time scales, respectively.

The time between two-body collisions is essentially just the mean free time of particles

in the fluid. The mean free time τmf is related to the mean free path lmf by

τmf = lmf/v, (4.7)

where v is the rms velocity of particles in the fluid. In dilute classical gases the mean free

path l can be related to the density and the interaction cross section,

nlmf σ ∼ 1. (4.8)

The rms velocity v can be related to the thermal momentum associated with the fluid:

mv ∼
√
mT , where m is the mass of the particle, and T is the temperature of the fluid.
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Combining these equations and the scaling relations of eq. (4.2), we see that the mean free

time scales like

τmf =
1

nσ

√

m

T
∼ ξ5

1

n0R2

√

m

T0
, (4.9)

where we have used the relation σ ∼ R2, with R being the characteristic range of the

interaction.

In addition to τmf, we must examine the characteristic time that two particles spend

interacting during a collision, τint. Equation (4.2) implies that scattering is at low momen-

tum. As a result, τint does not scale with ξ, since it is essentially a function of the details

of the two-body potential and does not depend on v. The fraction of the time between

two-body collisions during which the particles are interacting is f ∼ τint/τ2 ∼ ξ−5.

To form a two-body bound state, a three-body collision is necessary. That is, while two

particles are in the process of interacting, a third particle must collide with them. In terms

of the quantities defined previously, the time scale for such events is simply τ3 = τ2/f . As

a result, we see that τmeta/τfl ∼ τ3/τ2 ∼ ξ5, as claimed above. Other mechanisms take

longer parametrically: if the most rapid decay involves the formation of an N -body state,

an analogous calcuation yields τmeta/τfl ∼ ξ5(N−1).

To summarize, the arguments in this section show that the variants of the KSS bound

of class 1 can be violated by a fluid with a large number of species. Depending on the

choice of an interaction potential, the fluid that we have described can be either stable or

metastable. While the example used to demonstrate the violation of the bound is highly

artificial and unlikely to be realizable even approximately in a real world setting, as a

mathematical matter it is a legitimate counterexample. The implication is that the most

well-supported and most widely applicable variants of the conjecture — those of class 1 —

are not tenable.

5. Class 2

In this section, we discuss the variants of the KSS conjecture of class 2. This form of

the conjecture states that η/s ≥ 1/4π for all nonrelativistic fluids composed of a single

species of particle of spin-0 or spin-1/2. This variant of the conjecture is essentially the one

that was proposed by KSS in ref. [2]. By restricting the number of allowable species, this

variant of the conjecture attempts to avoid the problem with the Gibbs mixing entropy

that allowed the construction of a counterexample to the variants of class 1.

Note at the outset that the evidence in support of this class of conjecture is quite

limited. The AdS/CFT duality arguments do not apply. Since these calculations were

done in the large Nc limit, it is hard to understand how they could justify a bound that

fails for a large number of species and only works when the number of species is small

enough. Moreover, much of the empirical evidence in favor of a KSS bound does not apply

to variants of this sort. The term “single-species” in this context refers to systems whose

constituents are either elementary or are in their ground state and do not access higher

excited states. As a result, liquid water is not covered in this variant of the conjecture:

water molecules in a liquid state can access rotational modes, making water a multi-species
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fluid from this perspective. This limits the applicability of this variant of the bound mostly

to mono-atomic fluids, such as liquid helium. Since the vast majority of real world fluids

are not in this class, the fact that no known violation of the bound exists for real fluids

provides only modest support for the bound.

In this section, we will investigate a counterexample to variants of class 2. We will give

an example of a stable quantum-mechanical system composed of only one kind of spin-0

particle that can violate the KSS bound. Since the counterexample is for a stable fluid it

appears to rule out both variants 2a and 2b.

To demonstrate that the existence of a class 2 system violates the bound, we first define

the system by choosing a particular two-body interaction potential. The properties of the

fluid in a non-relativistic regime are determined by the interaction potential along with

the temperature and the density. The basic idea is to construct a two-body interaction

of finite range which has an an extremely large number of two-body resonant states right

above threshold. We show that the entropy for such a system has a lower bound, which by

a judicious choice of parameters can be made arbitrarily large, even though there is only

a single species of particles making up the fluid. Finally we argue that the shear viscosity

of such a system is not expected to become uncontrollably large as the parameters are

adjusted to make the entropy grow arbitrarily. Thus it appears that the ratio of η/s can

be made arbitrarily small within this class of theory.

5.1 Constructing the system

In this subsection, we define a single-species fluid composed of identical, stable, spin-0

particles. These identical spin-0 particles are considered to be the fundamental particles

of the fluid. We will choose a finite-range two-body interaction that supports no bound

states (two-body or many-body) while supporting an arbitrary number of arbitrarily low-

lying resonant states in the scattering amplitude. The resonant states may be long-lived

(depending on the choice of parameters of the potential), but it is important that they are

indeed resonant states, and not bound states, so that there is no question that the fluid is

of a single species.

Before discussing a detailed form of interaction which can generate this situation, it is

important to note at the outset the interaction will require an exceptional degree of fine-

tuning. The principal reason for this is that we require that the range of the interaction

remains fixed as we add resonances. We impose this requirement because we wish to keep

the density of the fluid fixed as we add resonances in order to avoid having many particles

simultaneously within the range of interaction. This creates a strong constraint in which

we require an exponentially large number of nearly degenerate s-wave resonances near

threshold for a system of fixed spatial extent. A useful way to envision making a system of

finite size with multiple nearly degenerate two-body resonances is to start by constructing

a system with numerous nearly degenerate two-body s-wave bound states and then add a

repulsive potential to push them into the continuum.

However, it is not trivial to create a large number of nearly degenerate bound states

with the same quantum numbers due to level repulsion. One way to proceed is by using

a central potential which has numerous nested spherical-shell-shaped wells; we denote the
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number of wells as N . Clearly, if the spatial size of the interaction is kept fixed as one goes

to a regime of large N (as is needed to achieve many bound states), the width of each well

in the radial coordinate, r, must be very small. To understand the tuning of parameters

that is required, it is easiest to start by considering a system with a single well at a fixed

position — with the position corresponding to the positions of one of the nested wells.

The parameters are picked such that the single-well system has a single two-particle bound

state. This can be achieved by tuning either the width or the depth of the well, or both.

Arbitrarily narrow wells can always be constructed to have a single bound state with fixed

binding energy by making the well deep enough. In taking the width in the radial direction

to be small (as we are forced to), in essence one is fine-tuning the depth of the potential,

V0, so that the binding energy is a very small fraction of V0. For a generic well, it is not

possible to do this for more than one bound state level. The bound state wave functions

will be localized in the radial coordinate around the well. Note that there is a considerable

level of parameter-tuning necessary to achieve this.

Now suppose we consider a system with all N of the wells present simultaneously. The

parameters would need to be further tuned so that the bound states in each of the N

wells are nearly degenerate. To the extent that bound state wave functions for the single

well case were well localized — i.e., have a spreading in r which is much less than spacing

between levels — the full system will have N nearly degenerate bound states, each with

an energy near that of the single well case. However, if that condition is not met, there

will be significant level repulsion and the condition of near degeneracy will be destroyed.

The characteristic spread of the wave functions is (mB)−1/2 where m is the particle mass,

and B is the binding energy. Accordingly, to include a large number of wells within a fixed

radius while keeping the levels nearly degenerate requires that the binding energy be tuned

to be large.

There is a final level of tuning required. We have shown that considerable tuning is

required to get N nearly degenerate deeply bound states in a system with N nested wells

with fixed range. However, we wish to have a system with N resonances. We can do this

by adding a finite-range repulsive step function potential which will push the bound states

just above threshold yielding resonances. As noted above, the bound states need to be

very deeply bound. Accordingly, to get resonances just above threshold, one must tune the

strength of the repulsive interaction to very high accuracy to cancel out the binding, leaving

behind barely unbound resonances. However, in principle there is nothing to prevent one

from arranging a system with all of this fine-tuning done as accurately as one wishes,

yielding as many resonances as one wants as close to threshold as desired.

An example of a two-body central potential that has the desired properties is

V (r) = −b
N

∑

k=1

δ

(

r − kL

N

)

+ V0θ

(

r −
(

L+
L

N

))

, (5.1)

where r is the distance between fundamental particles, L is the range of the potential, b

is the strength of each of the N delta functions, and the delta functions are raised on a

potential step of height V0. The additional factor of L/N in the step potential is intended
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to extended the range of the potential just beyond the last delta function. This ensures

that potential is identical in the neighborhood of each delta function. The δ functions

in the potentials should be thought of as very deep, narrow potential wells — where the

details of how this is done becomes irrelevant provided the width is much smaller than all

other scales in the problem. One can imagine tuning the parameters in the interaction of

eq. (5.1) (that is, choosing b and V0) so that any “would-be” bound states become barely

unbound, turning into low-energy, long-lived resonances. In appendix A, we give some

numerical evidence that it is possible to tune the parameters of the two-body interaction

of eq. (5.1) to create an arbitrary number of nearly degenerate low-energy resonances.

Qualitatively, one expects that the many different resonant states will behave as if they

were the different species in a multi-species fluid. However, since these states are resonant

states and not bound states, they eventually decay back into the fundamental particles,

meaning this really is an interacting single-species gas rather than a multi-species gas.

Furthermore, since the fundamental particles are absolutely stable, this system describes

a stable fluid.

For the system to be of a single species, it is critical that the system does not have

any three- or higher-body bound states. Given the singular nature of delta functions, one

might worry that the Hamiltonian for three-body or higher-body Hilbert spaces might be

unbounded from below, yielding arbitrarily deeply bound states. By regulating the delta

functions and treating them as finite width wells, it should become readily apparent that

this will not occur in the zero width limit with fixed resonance positions. Yet, it is not

immediately apparent whether or not the system, as given, supports three- or higher-body

bound states. To ensure that such states are excluded from our system we also impose a

three-body repulsive potential. We choose the three-body interaction V3(~r1, ~r2, ~r3) to be

V3(~r1, ~r2, ~r3) = V3Θ(R− max[l1, l2, l3]),

l1 = |~r1 −RCM |,
l2 = |~r2 −RCM |,
l3 = |~r3 −RCM |,

RCM =
m1 ~r1 +m2 ~r2 +m3 ~r3

m1 +m2 +m3
,

(5.2)

where V3, the strength of the three-body interaction, is a constant set to be larger than

any other energy scale in the problem, ~r1, ~r2, and ~r3 are the position vectors of the three

interacting particles, R is the range of the three-body interaction, RCM is the location of

the center of mass, and l1, l2, and l3 are the distances from the center of mass to the location

of each particle. The range of the three-body interaction range R is chosen to be larger than

the range of the two-body interaction L. This interaction forces the interaction between the

fundamental particles and any resonant state to be that of hard sphere scattering. Once

a two-particle resonance is formed, the three-body potential above prevents the resonance

from being disturbed by interactions with other particles and prevents the formation of

three-particle resonant states.
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5.2 Constructing a bound on the entropy

The calculation of the entropy of a strongly coupled many-body system can be quite diffi-

cult. Instead we use a variational argument which shows that entropy of the entire system

for a gas of many particles interacting through eq. (5.1) can bounded from below. In the

next subsection, we will choose a variational ansatz for which the bound is calculable and

show that the lower bound of the entropy can be made arbitrarily large.

Since the fluid under consideration has a finite temperature, we can work in the canon-

ical ensemble. Recall that in this ensemble, with natural units (kB = 1), the entropy is

given by

S =
E

T
+ log(Z). (5.3)

where E is the energy of the system, T is the temperature, and Z is the partition function.

By increasing the step height in eq. (5.1), we can tune the system to have only resonant

scattering states, and no two-body bound states. Similarly by choosing the strength of the

repulsive three-body potential in eq. (5.2) large enough, we can ensure that there are no

three- or higher-body bound states. This means that all of the possible configurations of

the fluid must have positive energy. Therefore, the entropy is bounded by

S ≥ log(Z). (5.4)

Just as with the entropy, the partition function is difficult to calculate directly, but the

partition function is also bounded from below.

Recall that in the canonical ensemble the partition function is given by

Z = Tr (exp[−βĤ]), (5.5)

where Ĥ is the Hamiltonian operator for the system and β is the inverse temperature. In

order to compute the partition function, one typically needs to use a complete basis for the

Hilbert space of the system. Since the Hamiltonian is Hermitian, the operator exp[−βĤ ] is

positive semi-definite. This implies that the partial trace over any arbitrary subspace of the

Hilbert space gives a lower bound on Z, termed Zsub. Choosing such a subspace amounts

to choosing a variational ansatz for the class of configurations of the fluid: a calculation of

the partition function within the variational ansatz is equivalent to the partition function

of some subspace of the complete Hilbert space. Furthermore, the relation of the partition

functions holds for the logarithm of the partition function as well,

log(Z) ≥ log(Zsub). (5.6)

Combining eqs. (5.4) and (5.6) yields

S ≥ log(Zsub). (5.7)

This shows that the entropy of the entire system is bounded from below by log(Zsub). By

working with a variational ansantz for which the partition function Zsub is calculable, we

can compute a lower bound on the entropy of the fluid.
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Figure 1: As a variational ansatz, we picture the fluid’s volume to be divided into cells with

exactly two particles in each cell.

5.3 Calculating the partition function

In this subsection we choose a variational ansatz for the system for which the calculation

of the lower bound for the entropy is tractable. The particular configuration of the system

that we consider is picked entirely for computation ease and is a highly unlikely one. This

merely ensures that the true entropy may be well above our computed lower bound.

Consider dividing the volume occupied by the fluid into cells. For our variational

ansatz, we will choose to have exactly two particles in each cell. The total wave function

for this ansatz can be constructed out of the wave function for each cell as:

Ψtotal(~r1, ~r2, . . .) = Ŝ
∏

cells i

Ψi(r2i−1, r2i) (5.8)

where Ψtotal, the wave function of the entire fluid, is a function of the position of every

fundamental particle in the fluid, Ŝ is an operator which symmetrizes the wave function

under the exchange of any two particles to impose the exchange symmetry of bosons, and

Ψi is the (two particle) wave function of each individual cell, and they are summed over

all of the cells. An illustration of the cell decomposition of the fliud is given in figure 1.

To make the computation of the entropy easier, we further restrict the configurations so

that wave function for each cell has the relative coordinate and center of mass coordinate

completely uncorrelated. With this choice, the wave function for a cell can be written as

Ψcell(~r, ~R) = Ψrel(~r)ΨCM(~R), (5.9)

where ~r is the relative coordinate, ~R is the center of mass coordinate, Ψrel is the wave

function associated with the relative coordinate, and ΨCM is the wave function associated

with the center of mass. Our ansatz is subject to one further condition: namely, the
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Figure 2: A close up view of one particular cell with the drawn circle representing the constraints

on the particles wave function imposed by the boundary conditions.

following (Dirichlet) boundary conditions:

Ψrel(~r)|r≥rmax
= 0,

ΨCM(~R)
∣

∣

∣

R≥Rmax

= 0,
(5.10)

where rmax and Rmax are the maximum relative coordinate and center of mass coordinate,

respectively, that is allowed by a given cell. We take rmax > L, so that the maximum

relative coordinate is beyond the range of the two-body interaction. These boundary

conditions ensure that for this particular ansatz the fundamental particles only interact

within a given cell, and that each cell is isolated from all other cells. This isolation implies

that the two-body interaction plus the boundary conditions give the dominant contribution

to the partition function within the subspace that we are considering. A pictorial view of

the constraints of the boundary conditions can be seen in figure 2. This highly restrictive

ansatz is certainly an unlikely configuration of the fluid, but it is a valid variational ansatz;

such configurations are present in the complete Hilbert space.

Having chosen an ansatz for the wave function of the fluid, we can compute the corre-

sponding partition function. The arguments of the preceding subsection showed that since

the fluid that we consider has only positive energy states, the entropy of the entire system

will be larger than the logarithm of the partition function calculated in this ansatz. We

have isolated each cell by imposing boundary conditions, and it is sufficient to calculate

the partition function of only one cell to exhibit the bound. Since each cell is identical,

the total entropy within the ansatz is the entropy of one cell times the number of cells.

Accordingly the entropy density of the fluid is bounded by:

s ≥ n

2
Scell (5.11)

where n is the total density (implying that n/2 is the density of cells, and the factor of 1
2

is due to our choice of two particles per cell).

In order to show that the entropy density of the fluid is arbitrarily large, we only have

to show that the logarithm of the partition function log(Zsub) for one particular cell in
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the fluid can be made arbitrarily large. To calculate the partition function, the energies of

the states within each cell are needed. Since the two-body interaction has a finite range,

the relative coordinate wave function within the cell has two different forms: one within

the range of the interaction, Ψin, and one beyond the range of the interaction, Ψout. The

outer wave function is that of a free state restricted by the boundary conditions, and can

be written as

Ψout(r) = A sin(k(rmax − r)), (5.12)

where A is a normalization factor, k is the momentum of the state such that k =
√

2µE with

µ as the reduced mass, and E is the energy of the state. The momentum, and thereby the

energy, of the quantum states within the cell can be calculated by matching the logarithmic

derivative at the boundary between the two wave functions. The matching leads to the

equation
Ψ′

in(r)

Ψin(r)

∣

∣

∣

∣

r=L

= −k cot(k(rmax − r))|r=L . (5.13)

The solutions of these equations give the energies of the states within each cell. Relating

this condition to the two-body s-wave scattering phase shifts yields the condition:

krmax = −δ(k) + nπ, (5.14)

where n is an arbitrary integer. Since the phase shifts pass rapidly through π at each

resonance, it should be apparent that there is one low-lying energy state within this ansatz

for every resonance.

The parameters of the two-body interaction can be tuned in such a manner that all

of the resonant states have nearly degenerate, arbitrarily low energies. If the resonance

energies are fine-tuned to be very small compared to the temperature of the system. their

contribution to the partition function is only slightly suppressed by a Boltzmann factor

and each resonance contributes nearly unity to the Zsub. From the resonant contributions

it is easy to see that

log(Zsub) > log(N) − EH/T (5.15)

where EH is the energy of the highest-lying resonance. To the extent that EH ≫ T and N

is large, the inequality is almost saturated; the logarithm of the partition function of the

restricted system thus scales as log(N). We illustrate that this scaling can be realized by

providing the results of numerical calculations in appendix A.

The bound established in the preceding subsection shows that the system’s entropy

density, s, is larger than log(Zsub). By increasing the number of resonant states while

keeping EH fixed, the lower bound on the entropy also increases. Since the number of

resonant states in the two-body interaction can become arbitrarily large, so can the lower

bound on the entropy density.

5.4 Viscosity and stability

To complete the argument that the single-species fluid considered here can violate the class

2 variant of the KSS conjecture, we need to argue that the shear viscosity η does not grow
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with the number of two-body resonant states, N (or, more precisely, grows slower than

logarithmically). Furthermore, it is important to show the resulting fluid is stable in order

to rule out variants of the conjecture of both classes 2a and 2b.

The shear viscosity is difficult to calculate for virtually any strongly-interacting system.

For fluids for which the Boltzmann equation is applicable, there are simplifying arguments

that allow one to calculate the shear viscosity [24]. However, due to presence of long-lived

resonant states, the fluid described here does not satisfy the assumptions of the Boltzmann

equation. Therefore, we know of no way to directly calculate the shear viscosity analytically.

Heuristically, the resonant states in the system described in this section can be thought

of approximately as bound states. In section 4, we showed that the shear viscosity of a

system of bound states need not scale uncontrollably with additional components to the

fluid. Therefore, it is difficult to believe that the shear viscosity for the approximate bound

states would scale vastly differently than that of a dilute many-component fluid. The actual

difference between the shear viscosity of the two systems should depend on how well the

bound state approximation holds, which depends on the resonant state lifetimes. We have

constructed the resonant states of the fluid to have very long lifetimes. As a result, for the

purposes of understanding the shear viscosity, the approximation that the resonant states

can be considered bound states should be quite accurate. Therefore the shear viscosity of a

fluid of long-lived resonant states should scale similarly to the viscosity of a fluid of bound

states. Moreover, the shear viscosity of a fluid typically diverges only when it approaches

either a non-interacting ideal gas, or behaves like the cold limit of a fluid without a defined

melting temperature, such as glass. It is hard to see how a strongly interacting system,

such as the one described in this paper, with a large number of long-lived resonant states

should approach either one of these limits with the addition of resonant states. Therefore,

the shear viscosity should remain finite as the entropy is made arbitrarily large, violating

the η/s bound. While this is not a mathematically rigorous argument, it is very hard to

see how it can fail.

In discussing shear viscosity, we approximated the system as though it contained bound

states. However, at a fundamental level there are no bound states, and the fluid is still

composed of only one species. If one wanted to compute η/s for this system numerically,

for instance, the relevant degrees of freedom to simulate would be those of the funda-

mental particles together with their interactions, and not of the resonances. Since these

fundamental particles are absolutely stable, by construction, the fluid is stable.

5.5 Summary of results on class 2

The preceding arguments show that the entropy, and therefore the entropy density increases

with the number of resonant states. We have argued that although the calculation of the

shear viscosity for the fluid we described is not tractable, there are strong heuristic reasons

to believe that it will not diverge when one chooses parameters to force the entropy to

diverge. To the extent one accepts these arguments, one must conclude that the ratio η/s

can be made arbitrarily small by increasing the number of resonant states, violating the

conjectured bound on η/s.
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The number of resonant states needed to actually violate the bound could be extremely

large, but the two-body interaction that has been discussed here can be tuned in such a

manner as to produce an arbitrary number of resonant states. That is, there does not

appear to be a limit inherent in the structure of quantum mechanics on the number of

resonant states that can be constructed within a finite ranged potential.

We note that if a conjecture is false for stable fluids in some class of theories, it must

be false for metastable fluids as well. As a result, the fluid that we have described in this

section actually provides a counterexample to all theories of class 2, both for stable and

metastable fluids.

6. Class 3

In the preceding two sections, we examined possible variants of the η/s bound for theories

of classes 1 and 2 and argued that it is possible to construct systems in those contexts

that violate the bound through a large Gibbs mixing entropy. As we noted in section 3.1,

however, one might believe that the structure of quantum field theory (and specifically, the

structure of “sensible” quantum field theories such as QCD) may rule out counterexamples

based on the Gibbs mixing entropy. That is, the conjecture that η/s ≥ 1/4π may be

taken to apply only to systems that can be described by “sensible” quantum field theories.

This form of the conjecture would be associated with class 3 and is similar to the variants

proposed in refs. [2, 3]. In this section, we will review a counterexample to this class

first presented in ref. [6], and give a more detailed discussion of some of the subtleties in

that analysis. To conclude this section, we discuss a possible objection by Son [16] to the

applicability of this counterexample to the KSS bound of class 3; we conclude that the

issues raised by ref. [16] should not limit the applicability of the counterexample.

As we saw in section 3.1, a naive attempt to construct a system of light mesons with

a very large number of different species by increasing the number of flavors Nf in QCD

resulted in the ratio η/s scaling as N2
f / logNf , implying that the bound held in the large

Nf limit. Recall that this scaling of η/s was due to the fact that to preserve asymptotic

freedom (and thus “sensibility”), as Nf was increased, the number of colors Nc also had to

be increased proportionally to Nf . The bound then held because the cross section scaled as

1/N2
c in the large Nc ∼ Nf limit. As it turns out, however, this result is not characteristic

of all meson gases. In this section we review a counterexample first discussed in ref. [6] for

theories of class 3 by considering a heavy meson gas.

6.1 A heavy meson gas

Consider a gas of heavy mesons. Each meson is made from a heavy quark and a light

anti-quark. For the discussion that follows, we will assume that the gas is only composed

from pseudoscalar heavy mesons, and will justify this assumption below. We can produce

many heavy meson species by fixing the number of light quark flavors to some small value

with one being adequate, and scaling the number of heavy quark flavors, Nf , to be large:

Nf = eξ
4
, where ξ is a dimensionless scaling parameter. As in section 4, this scaling is

chosen to ensure that the Gibbs mixing entropy of the heavy meson gas scales as ξ4, which
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is what is necessary to drive the ratio η/s to zero. As before, to ensure asymptotic freedom,

we must scale the number of colors, Nc, as we scale the number of heavy flavors, hence

Nc = eξ
4
. At this point, in the case of the light meson gas, the meson-meson cross section

was seen to scale as 1/N2
c , and the resulting increase in the viscosity prevented a violation

of the bound. However, the heavy meson cross section does not scale in the same way, and

the same problem does not arise.

Recall that in the example of a nonrelativistic gas discussed in section 4, it is important

to remain in the low-density, low temperature regime so that the calculation of both the

entropy and the viscosity is tractable. In this regime, two-particle scattering is dominant,

and the scattering is described by a Schrödiger equation for the relative wave function ψ,

(−∇2 +mV )ψ = mEψ, (6.1)

where m is the mass of each of the the interacting particle, V is the interaction potential,

and E is the energy of scattering associated with the relative motion of the particles. The

critical point is that the cross section depends only on the combinations mV and mE, but

not on V or E separately.

In the nonrelativistic gas case of section 4, mV is scale independent by construction

(since neither m nor V scale with ξ), while mE scales like the temperature, since the

typical energy of two-body scatterings within a gas is proportional to the temperature

T . Therefore, mE ∼ mT ∼ mT0ξ
−2, implying that classical two-particle, low-energy

scattering is dominant (assuming that the density is sufficiently low, as it is with the scaling

relations of eq. (4.1)). This implies that the cross section becomes scale independent in the

large ξ limit. For the pion gas, by contrast, the interaction potential V scales as 1/Nc, and

Nc must be large to maintain asymptotic freedom in the large Nf limit. The mass of the

pions is scale independent (as is the mass of all light mesons in large Nc limit), and thus

in the pion gas mV scales as 1/Nc, rather than being scale independent. Since Nc has the

same scaling as Nf , the cross section becomes small in the large Nf limit, preventing the

arguments given in section 4 from applying to the pion gas. As a result, the pion gas is

not a counterexample to the KSS bound. It is now not hard to see how a heavy meson gas

might evade these problems: the mass of the heavy mesons can be chosen to scale in such

a fashion that mV remains scale independent.

However, if the heavy meson mass were to scale with ξ to keep the combination mV

scale independent, the other important combination, mE, would no longer scale as ξ−2

as before unless the scaling of T were to be changed as well. One might be concerned

that changing the way T scales may cause the system to no longer be in the regime of low

temperature and low density. However, by fixing the scaling of mT to preserve the scaling

of eq. (6.1), the low temperature and low density regime of eq. (4.1) is simultaneously

maintained; by a judicious choice of scaling we can create a nonrelativistic heavy meson

gas equivalent to the nonrelativistic system in section 4. The necessary scaling relations

will be discussed below.

To understand the necessary scalings, let us begin by examining the heavy meson in-

teraction. In the heavy meson gas, the interactions between heavy mesons at long distances
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is mediated by the exchange of light mesons. That is, to leading order, the heavy meson

interaction potential is a Yukawa potential,

V (r) ∼ g2 e
−Mlr

r
, (6.2)

where g is the heavy meson/light meson coupling, and Ml is the mass of a light meson.

The mass of the light mesons is set by ΛQCD, and we can choose ΛQCD, and hence Ml, to

be independent of ξ. By choosing Ml to be scale independent, we show that the range of

the interaction becomes scale independent as well. The scale dependence of the potential

strength V (r) is then simply given by g2. In the large Nc limit, we expect that g ∼ 1/N
1/2
c ,

and thus V ∼ 1/Nc. We can now choose the heavy meson mass, Mh to scale as Nc so that

MhV remains scale independent, as desired. The mass of the heavy meson is dominated

by the mass of the heavy quark. By scaling the heavy quark mass appropriately, the heavy

meson mass can be fixed to scale as Nc. It is easy to see that choosing the heavy quark

mass, mh, to scale asmh = mh0
eξ

4
, wheremh0

is the scale-independent portion of the heavy

quark mass, will result in the correct scaling of the heavy meson mass, Mh = Mh0
eξ

4
, where

Mh0
is the scale independent portion of the heavy meson mass. These scaling relations

ensure that the relevant quantity MhV remains scale-independent. Note that while this

simple argument was given in terms of a meson-exchange picture, valid at long distance,

the scaling arguments hold quite generally.

In the nonrelativistic gas, we saw that mT scales like 1/ξ2. To be consistent with

this in the case of the heavy meson gas, we can set T ∼ 1/(Mhξ
2) = T0e

−ξ4
/ξ2 with

T0 a ξ-independent constant. This scaling relation preserves the scaling of MhT ∼ ξ−2

by construction, and therefore the relations of eq. (4.1) can be satisfied by choosing the

density, n, to scale as before, n ∼ n0ξ
−4. Finally, the light quark mass, ml, should be

scale independent, as is the light meson mass. To summarize, the parameters of the heavy

meson gas must scale as follows:

Nc = eξ
4

Nf = eξ
4

mh = mh0 e
ξ4

ml ∼ ml0

ΛQCD = ΛQCD0 n = n0ξ
−4 T = T0

e−ξ4

ξ2
. (6.3)

With these scaling relations, we can simply repeat the argument given in section 4, and

conclude that the viscosity η scales as ξ3, while the entropy density s scales as ξ4. This

implies that the ratio η/s scales as ξ−1. By taking ξ to infinity, we can thus drive the ratio

to zero for a system described by a “sensible” (that is, asymptotically free) quantum field

theory, violating the KSS conjecture for a system described by a theory of class 3.

We now justify the assumption that the heavy meson gas is dominantly composed from

spin-0 pseudoscalar mesons, as opposed to spin-1 vector mesons as ξ → ∞. Because of the

scaling relations chosen in eq. (6.3), the heavy meson gas is clearly in the heavy quark limit.

In this limit, the pseudoscalar, H, and vector, H∗, heavy mesons are nearly degenerate.

Therefore, one may naively expect both spin states to be present in the heavy meson gas.

However, the two spin states have a typical mass splitting on the order of
Λ2

QCD

mh
[28]. From

the parameter scaling relations in eq. (6.3), it is not hard to see that this mass splitting
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scales like ∼ e−ξ4
Λ2

QCD/mh0. We would expect a heavy meson gas to contain both the

pseudoscalar and the vector form of the heavy mesons, with their populations determined

by a Boltzmann distribution. Let us consider the ratio of the populations of the vector

mesons to the pseudoscalar mesons. From the Boltzmann distribution, this ratio is given

by
Nvec

Npseudo
∼ e−βMH∗

e−βMH
= e−β(MH∗−MH), (6.4)

where β is the inverse temperature. Using eq. (6.3), we see that

Nvec

Npseudo
∼ e

−ξ2
Λ2
QCD
mh0 , (6.5)

which for large values of ξ reduces this ratio to zero. Therefore, at large ξ the gas is pre-

dominantly composed of pseudoscalar heavy mesons, and we are well justified in neglecting

the heavy vector mesons.

6.2 Stability

As we have done with the other counterexamples, the stability of the fluid needs to be

considered. The system that we have constructed is actually metastable, and thus is a

counterexample to conjectures of class 3b. Because of the attractive nature of the potential

between heavy mesons, there are several ways by which the heavy meson gas may decay.

However, the decay time scales are perimetrically large, implying that the gas is metastable.

In this context, it is natural to consider whether the heavy meson gas might be suscep-

tible to decay through the formation of tetraquarks or other multiple meson states. As is

well known, as one approaches the limit of infinitely heavy quark masses (with light masses

held fixed) bound states of two heavy mesons, tetraquarks, must exist [29, 30]. The reason

for this is simple: the color Coulomb interaction between the two heavy quarks allows the

formation of a tightly bound diquark to which the the two light antiquarks then bind. An

alternative argument is that there is an effective potential between the two heavy mesons,

the long distance part of which is given by pion exchange which always has an attrac-

tive channel when one includes both vector and pseudoscalars. It is a general theorem of

elementary quantum mechanics that any potential with an attractive region always has

two-particle bound states in the limit that the reduced mass becomes large. Since we are

considering the limit of arbitrarily high masses with our scaling rules, one might expect

that bound tetraquarks will exist at large ξ and lead to metastability. However, this generic

theorem that bound tetraquarks must exist for large enough heavy quark mass assumes

a fixed number of colors Nc. The relevant combination is in fact mhN
−1
c since αs ∼ Nc.

Thus, the relevant parameter is mh0
∼ mhN

−1
c . If mh0

is small enough relative to ΛQCD,

the tetraquark will not bind. Thus, by a judicious choice of parameters one can always

prevent metastability due to the formation of tetraquarks.

It is plausible that there exist values of mh0
small enough so that stable tetraquarks do

not exist but hexaquarks do. Presumably by fixing mh0
to be smaller still, one can ensure

that stable hexaquarks also do not exist. More generally, it should be possible to ensure
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that any k-heavy meson bound states up to some fixed k are unbound. This means that

to the extent the system is metastable, it has a very long lifetime: from the arguments of

section 4.2 it is clear that τmeta/τfl ∼ ξ5(k−1), which for large ξ is very large indeed.

One might hope that by choosing mh0
to be small enough, we could eliminate all

possible modes of rearrangement, and thus obtain a stable fluid, as opposed to merely a

very long-lived metastable configuration. However, this is not the case: the process in

which Nc heavy mesons rearrange into a heavy baryon and a light anti-baryon is always

possible. As we show in appendix B, it is energetically favorable for the system to rearrange

itself into a heavy baryon and a light anti-baryon. The binding energy of a baryon made

from heavy quarks scales as Ncmh(Ncαs)
2 (the binding energy of a light baryon is order

ΛQCD and is negligible), while the binding energy of a system of Nc heavy mesons scales

as NcΛQCD. If the heavy quark mass mh is large enough, it is energetically favorable for

Nc heavy mesons to rearrange themselves to form a heavy baryon and a light anti-baryon.

As a result, the heavy meson gas cannot be absolutely stable.

However, the time scale for the decay of the gas through this process is parametrically

extraordinarily long. Recall that the scaling relations for the heavy meson gas are chosen

to keep it in a low-density regime, and that Nc-body interactions (i.e., collisions) are

necessary to convert Nc heavy mesons into two baryons. Such interactions are very rare,

and the frequency of such Nc-particle collisions decreases with the density of the gas. By

the standard arguments used previously, the ratio of time scales if the metastability is due

to this mechanism is astoundingly large, scaling as

τmeta/τfl ∼ ξ5(exp[ξ4]−1).

For quite modest values of ξ this is an exceptionally long time. It is not totally clear that

this scaling is relevant since it may be that an instability due to clumping of some finite

but large number of heavy mesons, k, might always occur before this process sets in. In

any case, the lifetime of the metastable state can be shown to be extraordinarily large.

There is one more decay mechanism for the heavy meson gas which should be men-

tioned. Recall that, in section 3.2, we mentioned two general types of metastable decays.

For most of this paper, we have been discussing the type where the fluid is locally unsta-

ble, but the time scale of the decay is long. However, the heavy meson gas may also be

metastable in the sense of being locally stable but globally unstable. In the types of fluids

with this sort of instability, the system will typically remain in the metastable state for

extremely long periods of time, usually due to some potential barrier, until a large per-

turbation forces the system into the lower-energy stable configuration. It may be possible

that the heavy meson gas is an example of this type of fluid, but since we are not violently

perturbing the system externally nor is there an internal mechanism to do so, the time

scale associated with such decays is very large, i.e. scaling exponentially with ξ. Therefore,

this possibility does not alter our conclusions.

6.3 The interplay of metastability and the thermodynamic and hydrodynamic

limits

Son [16] has raised an interesting and subtle issue regarding the interplay of metastability
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and the thermodynamic and hydrodynamic limits for the heavy meson gas. In doing so,

he argues that because of the peculiar nature of this interplay in the heavy meson system,

it is unreasonable to expect the KSS bound to apply. If one accepts this argument, then

the counterexample given in this section, while valid on its own terms, does not provide

evidence against the validity of the bound for more normal systems. However, as discussed

briefly in ref. [31], the issue raised in ref. [16] does not appear to remove the heavy meson

system discussed above from the class of theories for which a sensible bound ought to apply.

Thus, we believe that the conclusions drawn from the existence of this counterexample do

not need to be altered due to the arguments raised in ref. [16]. In this subsection, we

outline the issue raised in ref. [16] and discuss its resolution.

The entropy density of a gas becomes well-defined in the thermodynamic limit. This

means that the size of a system is large enough to contain a sufficiently large number of

particles of each of the possible particle species in the gas so that the entropy density

becomes well-defined. Let us define Vt as the volume in which (on average) we have one

meson of every species:

Vt ≡ L3
t ≡ Nf

n
=
ξ4eξ

4

n0
, (6.6)

where the final form imposes the scaling rules from eq. (6.3). As defined above, Vt defines

the characteristic volume scale that is associated with the thermodynamic limit. L3
t is the

characteristic ‘thermodynamic length scale’ introduced in ref. [16]. It should be clear that

to be in the thermodynamic limit, the physical volume of the system must be much larger

than this characteristic volume. Clearly, from the ξ scaling in eq. (6.6), very large systems

are required to achieve the thermodynamic limit for s. We note in passing that other

thermodynamic observables, such as energy density or pressure, approach their thermo-

dynamic limit much more rapidly than the entropy density since the themodynamic limit

of the entropy density alone depends on every species being present in a large numbers;

hence, other thermodynamic observables do not require exponentially large systems. In

this respect, the heavy meson system studied in this section is very unusual.

The viscosity, on the other hand, becomes well-defined in the hydrodynamic limit.

This requires that viscosity measurements be performed on a length scale Lh or larger,

where Lh sets a lower bound on the scale for which fluid behavior is evident. For dilute

systems, such as the one under consideration here, Lh is effectively the mean free path,

lmf. Using the scaling relations in eq. (6.3) one sees that Lh ∼ ξ4.

For common fluids such as water or nitroglycerin, the hydrodynamic length scale Lh

is generally comparable to, or larger than, the thermodynamic length scale Lt. For typical

dilute gases with one or a few species of particle, Lh ≥ Lt, since the mean free path is much

larger than the average interparticle spacing. The heavy meson gas considered here is quite

unusual in that Lt ≫ Lh. Because of this fact and the metastable nature of the fluid, one

might think that the bound should not apply to such systems, as argued in ref. [16].

To see the issue, suppose we want to measure η/s for some system composed of the

heavy meson gas. At first glance there is nothing associated with the metastable nature of

the fluid to prevent one from doing this to very high accuracy (at sufficiently large ξ). In

order to approach the hydrodynamic limit for which η is well defined, one needs to measure
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η in a system (or a part of a system) which is large compared to hydrodynamic length

scales. Since as shown above, the ratio of the life-time of the fluid to the mean collision

time is a positive power law in ξ (or higher), one can measure the viscosity over a system

much larger than Lh long before the system decays. Thus, η is essentially well-defined as

a hydrodynamic quantity. Similarly, s is essentially well-defined thermodynamically. The

issue of concern here is whether the fact that η is essentially well-defined hydrodynamically

is sufficient for the KSS bound to apply.

One natural perspective is that it ought to be sufficient. If the bound is general,

one might think that it ought to apply to any system in which η (a hydrodynamical

quantity) is essentially well-defined hydrodynamically, and s (a thermodynamical quantity)

is essentially well-defined thermodynamically. There is an alternative perspective [16],

however. Since the bound relates s to η, it is not unnatural to suggest that it should only

apply when η and s are both simultaneously well defined in the sense of being simultaneously

measurable in the same system.

If one adopts the latter view, there is a potentially serious problem. While the fluid

clearly lives long enough to measure η accurately over a hydrodynamic length scale, it is

very likely that the system would decay before η could be measured over the exponentially

larger thermodynamic length scale. Accordingly, ref. [16] argues that because η and s

cannot be determined simultaneously in the heavy meson system, the system is not in the

class of systems for which the bound is expected to apply. If this is true, then despite the

fact that the heavy meson gas on its own can violate the inequality η/s ≥ 1/4π, it does

not undermine the possibility of the existence of a bound which applies to more ‘normal’

systems arising from underlying UV-complete field theories even if they are metastable.

A priori, it is difficult to assess which of the two perspectives is likely to be correct.

The bound is conjectured rather than derived, and accordingly its underlying assumptions

are unclear. Thus, one might worry that if the second perspective turns out to be correct,

and that the bound only applies when η and s are both simultaneously well defined for

the same system, then the heavy meson example would not serve as a counterexample.

However, as we will show below, despite the argument of ref. [16] outlined above, this

perspective does not invalidate the heavy meson counter example.

The key point is that while the argument was formulated in terms of lengths scales,

the thermodynamic limit depends on volumes. Recall that in general, for a system to be in

the thermodynamic limit, the volume of the system is required to be large enough so that

repeated measurements of thermodynamic quantities produce the same results, and that

intensive quantities should be independent of the volume and the shape of the system. In

practice, for dilute systems this means that a system is effectively in the thermodynamic

limit if i.) the system is large enough to contain a sufficiently large number of particles of

each species, and ii.) the system is characteristically thicker than the thermal wavelength

1/
√
mT for all particles and in all directions. The second condition basically says that

quantum uncertainties in where particles are located are small compared to the size of

the system. This condition on the thickness of the system is the only condition on the

length scales of the system, as opposed to the volume. It is easy to see that for systems

with the scaling laws in eq. (6.3) the thermal wavelength scales as ξ1. Since the mean free
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path is always larger than 1/
√
mT for the heavy meson gas, condition ii.) is automatically

satisfied for any system with a thickness of the order of the hydrodynamic length scale or

larger, and the question of whether the thermodynamic limit is reached depends only on

the volume of the system, and not on the shape.

Given this, the notion of a thermodynamic length scale is not really well-defined: it

depends on the arbitrary choice of a particular shape for thermodynamic system. With

this in mind, consider as a simple illustration a non-relativistic, single-species ideal gas of

particles of mass m in equilibrium at density n and temperature T , contained in a rectan-

gular box. Suppose furthermore that the box is highly asymmetrical — the dimensions are

W ×W × t with W ≫ t—and that condition ii.) is satisfied: t≫ 1/
√
mT . Now, the con-

dition for the system to approach the thermodynamic limit with s well-defined amounts to

the condition that the volume times the density is much larger than unity. This is satisfied

provided that W 2n≫ 1/t.

Two observations are in order here. The first is simply that the thickness, t, need not

be larger than n−1/3 in order for the system to be in the thermodynamic limit. Indeed by

making W large enough it is possible to take t to be much smaller then the interparticle

spacing, and still have a consistent thermodynamic result. This can be explicitly verified

by very elementary calculations. The second is that the result holds regardless of whether

the rectangular region is considered to be a physical box containing the fluid, or merely as

a fidicual volume in a much larger system.

This simple result for a single component fluid is trivially generalized for a multi-

component fluid such as the heavy meson gas considered in this section. For the heavy

meson gas we can again consider a slab geometry W ×W × t, and find that the system is

in the thermodynamic limit so far as entropy density is concerned provided that

W 2 ≫ Nf

n t
=

1

n0 t
ξ4eξ

4

. (6.7)

Recall at this stage that measurements of η necessarily have a preferred direction.

One considers a fluid with a velocity gradient transverse to the direction of fluid flow; η

is the ratio of the stress to the magnitude of this gradient. Suppose that one wishes to

measure the viscosity of the heavy meson fluid in the slab considered above, and takes

the direction of the gradient to be the short side of the slab (i.e along the thickness t).

The viscosity is essentially well defined hydrodynamically, provided that a.) t is much

larger than the typical hydrodynamic scale and b.) the characteristic time for momenta

to propagate through the thickness t is much shorter then the decay time of the fluid.

Repeated measurements of η will then yield the same result up to very small fluctuations,

so that η is well-defined. Equation (6.7) implies that if we choose W large enough, we can

always ensure that the system is simultaneously in the thermodynamic limit with essentially

well-defined s. To ensure that this is true, it is sufficient to take W = aξ2 exp(ξ4/2) and

t = bξ4, with a and b sufficiently large constants. With this construction, at large ξ, we

have a system which violates the KSS bound with η and s determined simultaneously and

each essentially well defined. Moreover, if the system we are considering is large enough,
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then regardless of its shape, one can always find a fiducial volume for which η and s can

be measured simultaneously.

The upshot of this is that the requirement that η and s be determined simultaneously

in the same system in order for the KSS bound to apply does not rule out the heavy

meson system as a counterexample. At this point, one might object that the slab geometry

considered is not general. However, this does not undermine the counterexample. The

bound is supposed to hold generally for all systems arising from a “sensible”quantum field

theory, with η and s are essentially well-defined and measurable simultaneously. A system

composed of the heavy meson gas in this slab-like geometry proves that this is not true. The

fact that there exist other geometries in which the system decays before η is determined

does not alter this.

6.4 Class 3a

The previous counterexample does not rule out class 3a (or 3′ which is a subclass of class

3a) since it involves a metastable fluid. However, we should note that these variants of

the conjecture have quite limited domains of applicability. Recall from section 3.3 that

variants of the conjecture of class 3a do not apply to ordinary fluids such as water since the

quantum field theory underlying water, the standard model, allows nuclear reactions which

can alter the makeup of the fluid, albeit over very long times. However, by hypothesis for

class 3a, metastablity with arbitrarily long lifetimes is assumed to be qualitatively different

from stability. If this were not the case then our counterexample to class 3b would also

eliminate 3a since the time scales can be made very long.

Moreover, the fact that class 3a is of such limited applicability reduces the amount of

evidence available to support this variant of the conjecture. Recall that one of the strongest

pieces of evidence for the KSS bound was empirical: everyday fluids like water appear to

respect that bound; no known example violating it exists. However, this evidence does not

apply to conjectures in class 3a, for the reasons noted above.

Finally we note that although much of the analysis in this paper concerns the distinc-

tion between metastable and stable fluids, it is quite reasonable to suppose that that this

distinction is unlikely to be important. We take the view that, while it is logically possible

for there to be a universal lower bound (of 1/4π) on η/s for only stable fluids described by

sensible quantum field theories, it is very difficult to see why such a lower bound should

not apply even approximately to metastable fluids with arbitrarily long lifetimes.

To summarize, in this section we have described a system that provides a counterexam-

ple to the variant of the η/s bound of class 3b. The counterexample system is described by

a limit of QCD, a UV-complete quantum field theory, and is metastable with an arbitrarily

long lifetime. This counterexample does not apply to variants of the conjecture of class 3a

(and its subclass 3′), but this remaining variant has a very limited regime of validity, and

has relatively little evidence in its support.

7. Summary and discussion

There have been a number of variants of the conjecture on a universal lower bound for
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Variant QGP He H2O C3H5(NO3)3

3a. Y N N N

3′. Y N N N

Table 3: Table showing if each remaining conjecture can be applied (at least approximately)

to either the quark gluon plasma (QGP), liquid Helium (He), water (H2O), liquid nitroglycerin

(C3H5(NO3)3); Y(es), N(o)

η/s [1 – 3]. After classifying these variants based on their domains of applicability, we have

critically examined several variants of the conjectures. The broadest conjecture that has

been made is of class 1, that η/s ≥ 1/4π for all fluids described by quantum mechanics.

Of all of the forms of the conjecture, this one has the strongest empirical evidence in its

support. However, there exist counterexamples to variants of class 1, as we discussed in

section 4. The counterexample system constructed there is the prototype of the other

counter-examples discussed in the paper: the ratio η/s is driven arbitrarily close to zero

by tuning a system to have a very large entropy while the shear viscosity is held fixed.

In section 5, we discussed a counterexample to variants of class 2, that the bound holds

for nonrelativistic systems of one species with spin-0 or spin-1/2. By choosing a peculiar

interaction potential and tuning its parameters, we showed that the entropy of a gas can

be made arbitrarily large while arguing that the shear viscosity can remain fixed, violating

the bound. This form of the conjecture appears to have some limited empirical support,

but the existence of a counterexample to it suggests that the problem with the bound is

not limited to situations with an exponentially large number of species in the gas — a

contrived but well-defined interaction potential can produce systems that will violate the

bound.

Lastly, in section 6, we showed that the structure of “sensible” quantum field theories

does not appear to forbid the construction of systems with the very large number of species

necessary to construct the sort of counterexamples that we have discussed in the preceding

sections. In particular, we exhibited a counter-example to conjectures of class 3b, giving

an example of a metastable gas described by an asymptotically free limit of QCD that can

violate the bound. We note that the subtle issue raised in ref. [16] does not appear to alter

this. While class 3a is not ruled out, it has little evidence in its support, and applies to a

very limited class of theories. To illustrate the limits on the applicability of variants of the

conjecture of class 3a, we reproduce table 2 from section 3.3 above, with only the variants

of the conjecture that have not been ruled out shown. It appears that only exotic fluids

like the QGP remain as an example of fluids that might be constrained by this bound.

Finally, there is one class of theories which may respect the conjectured bound which

we have not discussed thus far in this paper. Since the original conjecture was based on the

AdS/CFT correspondence, the bound may only hold for field theories with gravity duals

in five dimensions (for instance, conformal field theories). As mentioned in section 2, there

is strong theoretical evidence that the bound is valid for this class of theories. Generally

speaking, conformal field theories would be included in class 3, as they are UV-complete

(i.e.,“sensible”) quantum field theories. Though we have demonstrated that the bound
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need not be respected for all theories of class 3, it is certainly possible that it holds for

some subclass of UV-complete theories. Hence, one may argue that field theories with

gravity duals are the “sensible” theories needed to maintain the bound.

We should recall at this stage that the restriction of the bound (if it is universal) to

systems which can be described by UV-complete relativistic field theories is difficult to

justify from first principles. After all, the speed of light c does not appear in the bound,

as one might expect if it the result is coming from the relativistic nature of the underlying

field theory. Moreover, from a dynamical point of view, while it is clear that physics at the

UV scale of the field theory might somehow affect low-energy observables such as η/s, it

is very hard to understand how the KSS bound could naturally emerge.

To conclude, it appears that there are counter-examples to the forms of the conjecture

which initially appear to be supported best; the remaining forms of the conjecture that

there is a universal bound on η/s for some well-defined broad class of systems outside

the original domain of conformal field theories have both limited applicability and little

evidence in their support. If the bound is correct despite the apparent existence of the

counter-examples described in this paper, it would have to be due to some physics beyond

the frameworks of quantum mechanics and quantum field theory. It is conceivable that

the bound has a justification related to quantum gravity [17] or string theory, but given

our present level of understanding, it is very difficult to see exactly how this might come

about.
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A. Numerical results from single species fluid model

In this appendix, we present some numerical results in support of the argument that the

partition function increases with the number of resonant states N . We neglect the effects

of the states associated with the center of mass motion on the partition function and the

effects of states associated with confining the wave functions in each cell, as these states

are independent of N . The parameters of the potential eq. (5.1) were chosen as follows (in

arbitrary units):

rmax = 1.0001; L = 1; m =
1

2
; ~ = kB = 1. (A.1)

Discussed in section 5, as N is increased, one has to tune b and V0 to produce narrow

resonances. In table 4, we show the partition function and its logarithm calculated with

increasing N and suitably tuned values of b and V0, at fixed temperature. The values for

b were chosen to ensure the resonant states were nearly degenerate, i.e. the larger b, the

smaller the spread in energy of the resonant states. The values of V0 were chosen such

that all states were barely resonant states and not bound states, while the temperature,

T , was chosen large compared with the highest resonant state energy but smaller than the

lowest-lying state associated with the artificial confinement to within a cell.

– 37 –



J
H
E
P
0
2
(
2
0
0
8
)
0
2
6

N b V0 T Zsub ln(Zsub)

5 100 2, 500.5 1600 5.06 1.62

10 200 10, 001.8 1600 10.46 2.35

15 350 30, 626.2 1600 15.46 2.74

20 480 57, 601.9 1600 20.98 3.04

30 700 122, 505 1600 30.09 3.40

Table 4: Numerical results showing the increase in the partition function Zsub calculated using

the variational ansatz. N is the number of resonant states; b is the strength of each delta function

well in two-body interaction; V0 is the strength of energy plateau that creates resonant states in

the delta function wells; T is the chosen temperature.

5 10 15 20 25 30
N

5

10

15

20

25

30

Zsub

Figure 3: Graph of the calculated partition function and a linear best-fit to the data.

Note that the partition function and its logarithm scales with larger number of resonant

states as expected by eq. (5.15). To further illustrate this, we plot the partition functions

and their logarithms in figures 3 and 4, along with linear and logarithmic best-fit curves,

respectively.

This numerical data supports the argument that by increasing the number of res-

onances in the potential of eq. (5.1), it is possible to increase the lower bound on the

partition function of the system, and thereby increase the lower bound on the entropy.

B. Metastability of heavy meson gas

As argued in section 6, the heavy meson gas that we discussed there is not susceptible

to decay via tetraquark and higher-quark state formation. However, as we show in this

appendix, one cannot tune the parameters of the heavy meson gas to prevent the formation

of all bound states. It turns out to be energetically favorable for Nc heavy mesons to

rearrange their quark content to form a heavy baryon and a light anti-baryon.

In order to show that the baryon configuration is more stable than the meson config-

uration, we must demonstrate that the binding energy is larger for the baryons than for
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Figure 4: Graph of calculated logarithm of the parition function and a logarithmic best-fit to the

data.

the mesons. The binding energy of a single heavy meson should be ∼ ΛQCD. However,

a rearrangement into baryons needs Nc heavy mesons because the baryons must be color

singlets; thus the total binding energy of the heavy mesons is NcΛQCD. The binding energy

of a light anti-baryon must be ∼ ΛQCD, as ΛQCD is the only scale for the light quarks.

Next, we must determine the binding energy of the heavy baryon. As noted long ago by

Witten [26], a baryon composed entirely of heavy quarks in the large Nc limit is described

accurately in the Hartree approximation for nonrelativistic quarks interacting via a color

Coulomb potential. We can calculate the binding energy relative for the heavy baryon

parametically via a viral theorem for this Hartree system. The single particle Hartree

Hamiltonian H for the system with Nc heavy mesons has a kinetic term and a potential

term:

Ĥ = T̂ + V̂ . (B.1)

The kinetic term, T̂ , can be expressed in the typical manner in terms of the Laplacian,

T̂ =
−1

2mh
∇2, (B.2)

where m is the mass of the heavy quark. The potential term, V (r), can be written using a

mean field approximation. The leading order one-gluon potential that binds heavy quarks

together has the form of a Coulombic potential, so in the mean field approximation, the

potential term can be written as

V̂ = Ncαs

∫

ρ(r′)

|r − r′|d
3r′, (B.3)

where αs, the strong coupling constant, has been factored outside the integral, and ρ(r′)

is the particle density for one of the heavy quarks; the external factor is technically Nc − 1

and indicates that each of the remaining quarks contributes. We will denote the exact

single particle ground-state wave function of the Hamiltonian of eq. (B.1) by Ψ(r).

– 39 –



J
H
E
P
0
2
(
2
0
0
8
)
0
2
6

In order to parameterize the energy of the ground state, instead of Ψ(r), we choose

ϕ(λr) as a variational ansatz, with λ is the variational parameter. If we choose the form

of ϕ(λr) such that it happens to reproduce the form of the exact Hartree solution, the

variational equations with respect to λ will yield an exact relation, i.e. a viral theorem.

The ground state energy can now be determined by minimizing the Hamiltonian with

regards to λ. In order to perform this minimization, we must first determine how the

kinetic and potential terms scale with λ. Using the change of variable R ≡ λr it is easy to

see that the kinetic term must scale as

T (λ) ≡ 〈ϕ(λr)|T̂ |ϕ(λr)〉 = λ−2T (1) ≡ T0

mhλ2
, (B.4)

we have factored out 1/mh so that T0 is independent of λ, mh, αs, and Nc.

To find the λ-scaling of the potential energy term, we first note that the single particle

density can be written in terms of the wave function Ψ(r) as

ρ(r) = Ψ∗(r)Ψ(r). (B.5)

When we consider the scaling parameter, the density can be written as,

ρ(r) = λ3ϕ∗(R)ϕ(R) = λ3ρ(R) (B.6)

where R = λr once again and the factor of λ3 comes from the normalization of the varia-

tional ansatz. With this expression for ρ(r), the scaling of the potential is given by

V (λ) ≡ 〈ϕ(λr)|V̂ |ϕ(λr)〉

= Ncαs

∫

ρ(R′)

|λr −R′|d
3R′

= Ncαs
1

λ

∫

ρ(r′)

|r − r′|d
3R′ ≡ λ−1NcαsV0, (B.7)

where we first did a change of variables from R′ to r′ = λ−1R′, and then factored λ out of

the integral, leaving the factor V0 independent of λ, mh, Nc, and αs. This has the effect of

explicitly showing the λ scaling of the potential energy.

Using the above results, the Hamiltonian now takes a form where the λ scaling is fully

explicit:

H(λ) =
T0

mhλ2
+
Ncαs

λ
V0. (B.8)

It is now easy to minimize this equation with respect to λ, and the variational estimate of

the ground state turns out to be

E0 = −mh(Ncαs)
2 V

2
0

4T0
, (B.9)

where −E0 is the binding energy for one quark. E0 is expected to be negative, indicating

a bound state; the binding energy of the heavy baryon is BE = −Ncmh(Ncαs)
2V 2

0 /(8T0).
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Since by construction both T0 and V0 are factors depending only on the form of the vari-

ational wave function and independent of λ, mh, Nc, and αs one has the following scaling

of the binding energy with the parameters of the problem

BE(heavy baryon) ∼ −NcmH(Ncαs)
2. (B.10)

Note that Ncαs, the square of the ‘t Hooft coupling is independent of Nc.

At this point we observe that before the rearrangement, the heavy mesons had a

binding energy of NcΛQCD, while after the rearrangement, the heavy baryon has a binding

energy of Ncmh(Ncαs)
2, while the light anti-baryon has a characteristic binding energy of

ΛQCD, which is negligible by comparison. Since the ‘t Hooft coupling constant scales like

∼ 1/ log2(mh/ΛQCD), the binding energy for the heavy baryon will always be perimetrically

larger than for the Nc heavy mesons (which also scales as NcΛQCD) for a large enough value

of the heavy quark mass. Therefore, this rearrangement of quarks is always energetically

favorable, and thus the heavy meson gas is metastable relative to this rearrangement.
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